الاثنين، 9 نوفمبر 2020

الثلاثاء، 28 يوليو 2009

Resistant Pest Management Newsletter A Biannual Newsletter of the Center for Integrated Plant Systems (CIPS) in Cooperation with the Insecticide Resistance Action Committee (IRAC) and the Western Regional Coordinating Committee (WRCC-60) Vol. 18, No. 2 (Spring 2009)

Monitoring organophosphorous resistance in pink bollworm using the Attracticide Resistance Monitoring Technique
ABSTRACT
Field and laboratory trials were carried out in two successive cotton seasons (2006 and 2007) and the results were collected in both early and late season. Three different strains, susceptible, El-Behera and Alexandria were chosen along the course of this investigation. The toxicity parameter (LC50) for the susceptible strain indicated that the toxicity of chlorpyrifos-methyl was the most toxic in the two durations (6 hr and 12 hr assessments) with LC50 of 14.9 and 4.26 ppm, respectively; followed by profenofos (LC50 values = 15.47 and 4.98 ppm) and then the least toxic was chlorpyrifos with LC50 values of 16.48 and 6.61 ppm. The statistical analysis data show no significant difference in toxicity of the tested three organophosphorous insecticides. The intensive and continuous use of the tested insecticides in controlling cotton bollworms and especially pink bollworm in Egypt lead to high resistance levels in El-Behera cotton fields reaching 193.97 fold against chlorpyrifos, 117.39 fold against chlorpyrifos-methyl and 86.53 fold against profenofos by late 2007 in a cotton season in the 6hr assessment. The calculated resistance values for Alexandria strain reached 29.98, 60.94 and 151.56 fold by the late 2007 cotton season against chlorpyrifos, chlorpyrifos-methyl and profenofos, respectively. On the other hand, the resistance levels which derived from 12 hr assessment show different values than that of 6 hr assessment for both strains. The resistance values of El-Behera strain reached 61.04, 169.35 and 83.94 fold against chlorpyrifos, chlorpyrifos-methyl and profenofos, respectively; while the resistance values of Alexandria strain reached 50.54, 149.7 and 336.77 fold against chlorpyrifos, chlorpyrifos-methyl and profenofos, respectively. Key words: Pink bollworm, Pectinophora gossypiella, resistance, Organophosphorous. INTRODUCTION Cotton, the worldۥs most important fiber is grown on more than 33.9 million hectares in about 100 countries. Four countries alone (China, the USA, India, and Pakistan) account for approximately two thirds of world output. If we added Uzbekistan and Egypt, six countries would account for three fourths of world cotton production, (Anonymous, 2004). The pink bollworm (PBW) Pectinophora gossypiella (Saunders) is a worldwide pest of cotton and in some regions of the world is the key cotton pest. Like the boll weevil, the PBW is a well adapted herbivore of cotton, feeding throughout the growing season on the cotton fruit (square and bolls) and burrowing habits. It has caused a loss in yield and costs of insect control, substantial indirect losses occur as result of the destruction of beneficial insects and the development of insecticides resistance in cotton. It has been extremely difficult to control using pesticides but considerable success has been achieved using alternative control tactics. Resistance to one or more pesticides has been documented in more than 447 species of insects and mites (Roush and McKenzie 1987). Pesticide resistance is an increasingly urgent worldwide problem. Resistance in vectors of human disease, particularly malaria-transmitting mosquitoes, is a serious threat to public health in many nations. Agricultural productivity is jeopardized because widespread resistance in crop and livestock pests. Serious resistance problem are also evident in pests of the urban environment, most notably cockroaches. Resistance to insecticides is one of the most serious problems facing agriculture today. Many previous studies revealed the high resistance of pink bollworm to insecticides in the cotton fields. In Egypt, organophosphorous have been widely used against cotton pests. However, although organophosphorous insecticides were the most efficient and widely used against bollworms, the onset of resistance developing to these compounds in bollworms have been recently documented (Georghiou, 1983; Haynes et al., 1987; Miller, 1990 and Shekeban, 2000). For resistance management tactics to be effective, resistance must be detected in its early stage (Rouch & Miller 1986) and early detection necessitates using one or more techniques. Being accurate, easy, rapid and inexpensive, which would aid production, would aid consultants and extension personal in making informed decisions on adequate control measures (Mink & Boethel 1992). The attracticide method was developed in summer of 1985 and was full implementation in 1986 and 1987 as an effective and rapid method to monitor insecticide resistance in pink bollworm adults in cotton fields to a wide range of insecticides (Miller, 1986 and Haynes et al ,1986 and 1987). MATERIALS AND METHODS 1- INSECTICIDES USED: Three organophosphorous insecticides were used : 1.1. Chlorpyrifos (Pestban®) EC 48% provided by Agrochema, Egypt. Application rate: 1 liter/ feddan 1.2. Chlorpyrifos-methyl (Reldan®) EC 50% provided by Agrochema, Egypt. Application rate: 1 liter/ feddan 1.3. Profenofos (Seleton®) EC 72% provided by: Syngenta , Agro, Egypt. Application rate: 0.75 liter / feddan. 2- PHEROMONE USED Provided by the Ministry of Agriculture, Egypt, as Pink rubber septum containing 1 mg Gossyplure. 3- OTHER CHEMICALS USED Stickum® (sticky adhesive) and acetone.
Spring 2009 Resistant Pest Management Newsletter Vol. 18, No. 2
32
4- INSECTS USED: Pink bollworm (PBW) Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). 4.1. The laboratory strain: Male moth population of PBW was supplied by the Bollworm Research Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, and Giza, Egypt, where it has been reared for more than 10 years in conditioned laboratory without exposure to insecticides. The rearing procedure was adopted as that recorded by Abdel Hafizes et al (1982). 4.2. Field strains: Male moth populations of PBW from both Kafr El-Dawar District cotton fields, El-Behera Governorate, and Faculty of Agriculture farm, Alexandria Governorate, Egypt were used locally in the present study. 5- ARMT PROCEDURE: The attracticide resistance monitoring technique (ARMT) is that method where delta traps were used with sticky adhesive coated cards containing the insecticide concentrations placed in the trap bottom. Rubber septa with 1mg gossyplure acted as the pheromone source. This technique provided stable LC50's with low control mortality. This technique was used as described by Miller (1986) and modified by Shekeban (2000). 6- Statistical analysis 6.1. Regression equation and confidence limits: Regression equation, LC50, LC95 and confidence limits were calculated according to probit analysis computer program (Finney 1971). 6.2. Resistance Ratio (R.R.): Resistance ratio (RR) values were measured according to the following equation: Resistance Ratio (R.R.) = LC50 of the Field strain LC50 of the susceptible strain (Fold) RESULTS AND DISCUSSION 1- Toxicity Parameters and Resistance Ratios after 6 hr. of treatment. Data in table (1) show that the LC50 of the tested organophosphorus insecticides at the early 2006 cotton season from the sex hours assessment were differed between the three tested strains where the susceptible strain had the lowest LC50 values, while these values were higher in the field strains from the two locations. Table (1): Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 6 hrs. of treatment at early 2006 cotton season The LC50 values of chlorpyrifos for the three tested strains (susceptible, El-Behera and Alexandria) were 16.48, 2832.8 and 260.09 ppm, respectively; while the corresponding LC95 values were 314.8, 284724.2 and 1929.85 ppm, respectively. Comparing the LC50 values of the two field strains with that of the susceptible strain showed resistance levels of 171.89 and 15.78 folds for El-Behera and Alexandria respectively. For chlorpyrifos-methyl, the LC50 values were 14.9, 955.1 and 407.84 ppm, and the corresponding LC95 values were 281.9, 66800.78 and 6661.02 ppm for susceptible, El-Behera and Alexandria strains, respectively; while the calculated resistance values were 64.1 fold for El-Behera strain and 27.37 folds for Alexandria strain. The third tested insecticide, profenofos, LC50 values were 15.47, 909.1 and 955.93 ppm and the LC95 values were 230.7, 11019.74 and 85872.7 ppm for susceptible, El-Behera and Alexandria strains, respectively; whereas the resistance ratios were 58.67 and 61.79 fold for El-Behera and Alexandria strains, respectively. Table (2) show that, the obtained data after the 6 hr assessment at the late 2006 cotton season taken the same way where the LC50 values for chlorpyrifos were 16.48, 3025.44 and 337.24 ppm for the same order of the tested strains and the corresponding LC95 values were 314.8, 110064 and 26.28.87 ppm. The resistance ratios were 183.58 and 20.46 folds for El-Behera and Alexandria strains, respectively. The obtained data for chlorpyrifos-methyl show LC50 values of 14.9, 1601.18 and 560.06 ppm and LC95 values of 281.9, 42651.1 and 9094.12 ppm for susceptible, El-Behera and Alexandria strains, respectively; while the resistance
Spring 2009 Resistant Pest Management Newsletter Vol. 18, No. 2
33
values were 107.47 for El-Behera strain and 37.58 for Alexandria strain. The LC50 values for profenofos recorded 15.47 ppm to the susceptible strain, 970.16 to Al-Behera strain and 1092.79 to Alexandria strain. The corresponding LC95 values were 230.7, 16718.8 and 73257.6 ppm, respectively; while the recorded resistance values were 62.71 and 70.63 fold for El-Behera and Alexandria strains, respectively. Table 2: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 6 hr. of treatment at late 2006 cotton season Regression equation, LC50 values, LC95 values and the resistance ratios of the tested insecticides for the three strains in early 2007 cotton season after 6 hr of treatment were calculated and then tabulated in table (3). The chlorpyrifos LC50 values were 16.48 ppm for the susceptible strain, 3100.1 ppm for El-Behera field strain and 393.51 ppm for Alexandria field strain. The LC95 values were 314.8, 43519.2 and 3163.3 ppm; respectively On the other hand, the results show LC50 values for chlorpyrifos-methyl of 14.9, 1705.2 and 693.54 ppm and LC95 values of 281.9, 20145.6 and 6624.13 ppm, respectively. Also the LC50 values of profenofos were 15.47, 1167.03 and 1481.23 ppm while the LC95 values were 230.7, 12304.7 and 65143.3 ppm for the previous strains order. The resistance ratios against the three tested insecticides chlorpyrifos, chlorpyrifos-methyl and profenofos were (188.4 and 23.87 fold), (114.44 and 46.54 fold) and (75.43 and 95.74) for both El-Behera and Alexandria Strains, respectively. Table 3: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 6 hr. of treatment at early 2007 cotton season In table (4), the same LC50's and LC95's of the tested insecticides for the susceptible strain which mentioned before were installed. The LC50, LC95 and the resistance value of chlorpyrifos for El-Behera strain were 3196.62 pm, 49433.2 ppm and 193.97 fold; respectively, while they were 494.1 ppm, 4317.59 ppm and 29.98 fold for Alexandria strain. Chlorpyrifos-methyl LC50, LC95 and the resistance value for El-Behera strain were 1749.2 ppm, 31436.5 ppm and 117.39 fold, whereas they were 908.15 ppm, 10932.5 ppm and 60.94 fold, respectively for Alexandria strain. Profenofos LC50, LC95 and the resistance value for El-Behera strain were 1338.63 ppm, 18245.1 ppm and 86.53 fold, whereas they were 2344.69 ppm, 26723.3 ppm and 151.56 fold, respectively for Alexandria strain.
Spring 2009 Resistant Pest Management Newsletter Vol. 18, No. 2
34
Table 4: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 6 hr. of treatment at late 2007 cotton season 2- Toxicity Parameters and Resistance Ratios after 12 hr. of treatment. The toxicity parameters (LC50, LC95) of chlorpyrifos, chlorpyrifos-methyl and profenofos against the susceptible strain after 12 hr of treatment were obtained and tabulated in all tables of this section as follow: the LC50's were 6.91, 4.26 and 4.98 ppm, while the LC95's were 209.3, 153.3 and 182.8 ppm, respectively. Data in table (5) show that the LC50's of chlorpyrifos, chlorpyrifos-methyl and profenofos against El-Behera strain were 246.25, 132.4 and 213.57 ppm, while the LC95's were 7718.66, 2571.21 and 1729.53 ppm, respectively. On the other hand El-Behera strain recorded resistance ratios of 35.63, 31.08 and 42.88 fold against the three insecticides, chlorpyrifos, chlorpyrifos-methyl and profenofos, respectively. Also, the data show that the LC50's of chlorpyrifos, chlorpyrifos-methyl and profenofos against Alexandria strain were 152.31, 243.42 and 216 ppm, while the LC95's were 596.21, 2748.39 and 15339.43 ppm, respectively; where the recorded resistance ratios were 22.04, 57.14 and 43.37 fold against the three insecticides, chlorpyrifos, chlorpyrifos-methyl and profenofos, respectively. Table 5: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 12 hr. of treatment at early 2006 cotton season Table (6) shows that, the obtained data after the 12 hr assessment at the late 2006 cotton season recorded LC50 values of chlorpyrifos equal to 355.38 and 199.7 ppm for El-Behera and Alexandria strains, respectively and the corresponding LC95 values were 9342.4 and 1635.2 ppm, while the resistance ratios were 51.42 and 28.9 fold. The obtained data for chlorpyrifos-methyl show LC50 values of 410.08 and 280.9 ppm and LC95 values of 17877.08 and 2743.4 ppm for El-Behera and Alexandria strains, respectively; while the resistance values were 96.26 fold for El-Behera strain and 65.93 fold for Alexandria strain. The LC50 values for profenofos recorded 316.18 ppm against El-Behera strain and 269.97 ppm against Alexandria strain and the corresponding LC95 values were 7536.21 and 20228.8 ppm, while the recorded resistance values were 63.48 and 54.21 fold for El-Behera and Alexandria strains, respectively.
Spring 2009 Resistant Pest Management Newsletter Vol. 18, No. 2
35
Table 6: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 12 hr. of treatment at Late 2006 cotton season The presented data in table (7) discuss the toxicity parameters that were observed after 12 hr of treatment at the early 2007 cotton season. The LC50's of chlorpyrifos, chlorpyrifos-methyl and profenofos against El-Behera strain were 351.93, 385.05 and 268.82 ppm, while the LC95's were 12418.7, 9168.18 and 5735.3 ppm, respectively. The recorded resistance ratios were 50.93, 90.38 and 53.97 fold against chlorpyrifos, chlorpyrifos-methyl and profenofos, respectively. Also, the data show LC50's of chlorpyrifos, chlorpyrifos-methyl and profenofos against the Alexandria strain equal to 213.77, 303.08 and 406.39 ppm, while the LC95's were 2650.1, 4610.29 and 32773.9 ppm, respectively; where the recorded resistance ratios were 30.96, 71.14 and 81.6 fold against the three examined insecticides, respectively. Table 7: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 12 hr. of treatment at early 2007 cotton season. The installed data in table (8) shows the LC50, LC95 and the resistance value of chlorpyrifos for El-Behera strain were 421.82 pm, 11085.7 ppm and 61.04 fold; respectively, while they were 348.63 ppm, 2778.14 ppm and 50.54 fold for Alexandria strain. Chlorpyrifos-methyl LC50, LC95 and the resistance value for El-Behera strain were 721.45 ppm, 21173.3 ppm and 169.35 fold, whereas they were 637.76 ppm, 6538.82 ppm and 149.7 fold, respectively for Alexandria strain. Profenofos LC50, LC95 and resistance value for El-Behera strain were 418.04 ppm, 8544.23 ppm and 83.94 fold, whereas they were 1677.16 ppm, 21943.8 ppm and 336.77 fold, respectively for Alexandria strain. Table 8: Toxicity Parameters and Resistance Ratios of the tested organophosphorous after 12 hr. of treatment at Late 2007 cotton season The intensive and continuous use of the tested organophosphorous compounds in controlling cotton bollworms in Egypt either by the application program of the Ministry of Agriculture or by farmers themselves lead to the development of resistance in pink bollworm strains. The obtained data showed that the resistance levels were increased from early to late season and from one season to another. These findings are in agreement with Tabashnik, (1986) who recorded resistance ratios in diamondback moth Plutella xylostella equal to 130 folds against DDT. Magaro and Edelson (1990) reported that the RR based on LC50 in diamondback moth was 145 folds for methamidophos. The finding of Plapp et al (1990) was in harmony with the present data when high levels of resistance were detected in tobacco budworm collected in the spring. Osman et al (1991) found that the field strain of PBW reverted to resistance levels close to susceptible laboratory strain at five generations after removing insecticidal pressure. Furthermore, Campanhola et al (1996) reported that, removing selection pressure for
Spring 2009 Resistant Pest Management Newsletter Vol. 18, No. 2
36
one or more generation, alternating insecticides, and changing control strategies decreased the frequency of gene resistance to a level where control can become possible again. Finally, Shekeban (2002) recorded high levels of resistance in pink bollworm field strains by the late 2000 cotton season against profenofos, chlorpyrifos-methyl and chlorpyrifos, these levels were 33.82, 44.79 and 35.16 fold, respectively. Also, reported that by the late 2001 cotton season the resistance levels were increased to be 38.45, 50.26 and 42.3 fold. REFERENCES Abd El-Hafez, A. ; A.G. Metwally and M.R.A. Saleh (1982). Rearing the pink bollworm Pectinophora gossypiella (Saunders) on kidney bean diet in Egypt. Res. Bull. Agric. Zagazig. Univ.; 576:1-10. Anonymous (2004). UNCTAD, United Nations Conference on Trade and Development (2004). World cotton production. Research summary. www.unctad.org/ infocomm/anglais/cotton/market.htm Campanhola; C.; B-E Mc Cutchen; E.H.Baehrecke and F.W. Plapp ,Jr. (1996). Biological constraints associated with resistance to pyrethroids in the tobacco budworm. Econ . Entomol. ; 84 (5) ;1404-1411. Finney, D.J. (1971), "Probit Analysis" 3rd ed.; Cambridge Univ. Press, Cambridge, London, UK, pp. 318, Georghiou, G.P. (1983). Management of resistance in arthropods P.P. 769-792. In G.P. Georghiou and T. Satto (Eds), pest resistance to pesticides. Plenum, New York. Haynes, K.F. M.P. Parrella ; J.T. Tumble and T.A. Miller (1986 ). Monitoring insecticide resistance with yellow sticky cards. California Agric.; 11-12. Haynes, K.F. ; T.A. Miller ; R.T. Staten ; W.G. Li and T.C. Baker (1987). Pheromone traps for monitoring insecticide resistance in the pink bollworm moth (Lepidoptera : Gelechiidae) : New tool for resistance management. Environ.Entomol.; 16:84-89. Magaro, J.J and N. Edelson (1990). Diamondback moth (Lepidoptera : Plutellidae) in south Texas: A technique for resistance monitoring in the field . J. Econ. Entomol., 83 (4): 1201-1206. Miller, T.A. (1986). Status of resistance in the cotton insect complex. Dettwide cotton production research conf.; 162-165. Miller, T.A. (1990). Resistance monitoring of pink bollworm California Department of Food and Agriculture (CDFA), pink bollworm final report 1990; 146-147. Mink, J.S. and D.J. Boethel (1992). Development of a diagnostic technique for monitoring permethrin resistance in soybean looper larvae (Lepidoptera : Noctuidae). J.Econ. Entomol.; 85(4):10565-1062. Osman, A.A. ; T.F. Watson and S. Sivasupramaniam (1991). Reversion of permethrin resistance in field strains and selection for azinphos-methyl and permethrin resistance in pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol., 84 (2): 353-357. Plapp, F.W. Jr; J. A. Jackman ; C. Campanhola ;R. E. Frisbie; H.B.Graves ; R.G. Lutterll; W.F. Kitten and M. Wall (1990) . Monitoring and management of pyrethroid resistance in the tobacco budworm (Lepidoptera: Noctuidae) in Texas, Mississippi, Louisiana, Arkansas and Oklahoma .J. Econ .Entomol., 83 (2) 335-341 Roush, R.T. and G.L. Miller (1986). Considerations for design of insecticide. J. Econ. Entomol.; 87 (2): 184-192. Roush, R. T. and J. A. McKenzie (1987). Ecological genetics of insecticide and acaricide resistance. Ann.Rev. Entomol.; 32: 361-380. Shekeban, M. M. K. (2000). Studies on insecticide resistance in certain major cotton insects with special reference to different measurements and monitoring methods. Ph.D. Thesis, Department of Pesticides, Faculty of Agriculture, Menoufiya University. Shekeban , Magdy M.K (2002). Attracticide and biochemical monitoring for insecticide resistance in pink bollworm ( Lepidoptera : Gelechiidae ). Proc. 1st Conf. Of the Central Agric. Pestic. Lab. Giza, Egypt, 3-5 September, 2002, . Vol.2, PP 607-619 Tabashnik, B.E. (1986). Model for managing resistance to fenvalerate in the diamondback moth (Lepidoptera: Pluellidae). J. Econ. Entomol., 79: 1447-1451.
M. M.K.SHEKEBAN1, A.M.I.AL-BELTAGY1, M.M.ABO EL-AMAYEM2, S.M.I.KASSEM2, A.H.MANCEE2 AND S.A.EL-ARAMI2 1- Bollworm Department, Plant Protection Research Institute, Agriculture Research Center, Egypt2- Chemistry of Pesticides, Faculty of Agriculture, Alexandria University, Egypt.

Insecticides resistance assesment project

مشروع قومى
تطبيقى على غرار
مشروع تقدير نسب الإصابة بديدان اللوز فى اللوز الأخضر


" تقييم مستوى حساسية الحشرة الكاملة للسلالات الحقلية لديدان اللوز ( القرنفلية والشوكية والأمريكية ) ودودة ورق القطن للمبيدات الكيميائية المستخدمة باستخدام مصائد الجاذبات الجنسية المطورة "

مقدمه

أ.د. عبدالله محمد البلتاجى

رئيس بحوث – قسم بحوث ديدان اللوز – معهد بحوث وقاية النباتات


1) مقدمة :-
تلعب المبيدات الكيميائية دورا فعالا فى منظومة المكافحة المتكاملة للآفات ( IPM ) كسلاح المكافحة الآخير والفعال عندما لا تجدى وسائل المكافحة الأخرى , وذلك عندما يتخطى مستوى الضرر الإقتصادى ( Economic Injory Level ) مستوى الحد الإقتصادى الحرج ( Economic Threshold) .
ولكن نظرا للإستخدام المكثف , والمستمر , والغير رشيد للمبيدات الكيميائية أحيانا , والمنفرد دون وسائل المكافحة الأخرى أحيانا أخرى , فإن السلالات الحشرية الحلقية كثيرا ما تكتسب صفة المقاومة للمبيدات ضد هذا المبيد أو ذاك , مما يؤدى إلى فشل المكافحة بإستخدام هذا المركب , ولمحاولة الحد من الإصابة والخسارة , يتم اللجوء إلى رشة أخرى بمبيد آخر على وجه السرعة , وتكون النتيجة كارثية إذا كانت السلالة الحشرية الحقلية قد إكتسبت المقاومة ضد هذا المبيد الآخر ( فى حالة الإستخدام العشوائى للمبيدات كثيرا ما يحدث ذلك ) , مما يترتب عليه الأثار السلبية التالية :-
1- التأثير الإبادى على الحشرات النافعة , والأعداء الطبيعية ( والتى بطبيعتها لا تكون هدف المكافحة المباشر , وبالتالى الأكثر حساسية ) .
2- حدوث تحول لبعض الحشرات الثانوية إلى حشرات رئيسية ( Out-break ) .
3- زيادة الإصابة والخسارة فى المحصول الإقتصادى .
4- زيادة تكاليف المكافحة .
5- تلوث البيئة بالمبيدات .
6- التأثير السلبى على صحة الإنسان وإنتاجيته .

من هنا تبرز أهمية الحاجة إلى وسيلة تقييم فعالية المبيدات المستخدمة ( Insecticides Efficiency Bioassay Technique ) , وأيضا تكون صالحة للتنبؤ بظهور سلالات مقاومة ( Insecticides Resistance Monitoring Technique) على أن تكون هذه الوسيلة : بسيطة – سهلة – سريعة – دقيقة .

ومن حسن الحظ فقد توفرت هذه الوسيلة ( Attracticides Resistance Monitoring Technique ) التى نعرض تسلسلها التاريخى فيما يلى :-

2) التسلسل التاريخى لإستخدام هذه الوسيلة فى الولايات المتحدة الأمريكية ومصر :-
1- إستخدم هذه الوسيلة لأول مرة فى الولايات المتحدة الأمريكية T. Miller عام 1986 .
2- طور البلتاجى ( مقدم المشروع ) واستخدم هذه الوسيلة تحت الظروف المصرية , لأول مرة ضمن أعمال المشروع 309 لعام 1991 ( الذى كان باحثه الرئيسى ) .
3- زار البلتاجى T. Miller فى كاليفورنيا ( Riverside ) وعمل معه وفى معمله لتطوير هذا المشروع, ضمن بعثة ما بعد الدكتوراة إلى الولايات المتحدة ( عام 1993 ) .
4- نشر البلتاجى نتائج هذا العمل لأول مرة فى مصر عام 1996 .
5- أشرف البلتاجى على رسالتى دكتوراة (1995 – 2000) للزميلين د. مجدى شكيبان , د. محمد البسيونى بجامعة المنوفية .
6- تم نشر عدد من البحوث من رسالتى الدكتوراة فى نفس المجال لاحقا ( 2000 – 2002 ) .
7- قام الزميلان بعد ذلك بنشر عدد من الأبحاث كانت ضمن أعمال الترقية لباحث أول لكل منهما ( 2000 – 2005 ) , بالإضافة إلى تعاونهما مع عدد من الزملاء فى القسم , فى نفس المجال.
8- ثم أشرف البلتاجى ( 2006- 2008 ) على رسالة دكتوراة بكلية الزراعة جامعة الإسكندرية ( الشاطبى ) لتطوير آخر فى هذا المجال لتقييم فعالية المبيدات , بالإضافة إلى التنبؤ بالمقاومة , مما أكسب الطريقة التفرد بتلبية إحتاجاتنا السابقة الذكر كاملة.
9- وقد تم تقديم عدد من الأبحاث للنشر فى هذا المجال (2009 ).

3) مميزات هذه الطريقة التى تدفعنا للتقدم بها لعمل قومى :-
1- بسيطة - – سهلة – سريعة – دقيقة .
2- لا تحتاج إلى تربية موسعة ( كما يحث دائما فى طرق التقييم الأخرى ) .
3- تتعامل مباشرة مع السلالات الحقلية فى الحقل , وليس حتى بعد نقلها للمعمل .
4- تتم تحت نفس الظروف البيئية المستخدم فيها المبيد , والتى تعيش فيها الحشرة .
5- تتعامل مباشرة مع الحشرة الكاملة ( هدف المكافحة للحد من التكاثر والذرية ) .
6- يتم التعامل مع أكثر الأطوار حساسية , وبالتالى نحصل على تقييم دقيق جدا.
7- نستطيع أن نجرى التقييم لأى عدد من المركبات فى وقت واحد وتحت نفس الظروف تماما .
8- يتم الحصول على النتائج خلال 12 ساعة فقط , مهما كان حجم العمل .
9- يمكن إجراءه فى أى عدد من المحافظات فى نفس الوقت تماما .
10- بهذه الطريقة نستطيع أن نضع سياسة للسيطرة على ظاهرة مقاومة الحشرات للمبيدات ( Insecticides Resistance Management ) , بإستخدام البدائل , المنشطات , التتابعات , الوسائل الأخرى بطريقة علمية فى غاية الدقة .
11- مما يساعد على المحافظة على فعالية كل المبيدات المتاحة كوسيلة مكافحة فعالة , عندما تستدعى الضرورة .

ومن هنا تأتى الأهمية القصوى للمشروع الذى أقدمه اليوم .

4)- أهداف المشروع :-

1- تقصى مستوى حساسية ديدان اللوز ( القرنفلية والشوكية والأمريكية ) ودودة ورق القطن للمبيدات الكيميائية المستخدمة .
2- باستخدام مصائد الجاذبات الجنسية ( بالفرمون المتخصص ) ضد الحشرة الكاملة مباشرة على السلالات الحقلية , فى مناطق الإصابة والمكافحة المختلفة ( فى آن ٍ واحد ) .
3- وذلك دون الحاجة إلى تربية موسعة ( والتى تتطلب إمكانات كبيرة وتكلفة عالية , ومجهودات ضخمة كثيرا ما تفشل نتائجها , وقليلا ما تستمر فى العمل ) .
4- تحديد أنسب المبيدات المتاحة خلال الرش الدورى فى المراكز المختلفة لإعطاء أعلى نسبة موت وذلك باستخدام تلك التقنية الحديثة والسريعة والفعالة والدقيقة .
5- خفض الإصابة بأخطر الآفات سواء فى محصول القطن والخضر أو المحاصيل الأخرى .
6- رسم خرائط على مستوى الجمهورية – المحافظة – المركز للتوزيع الجغرافى للسلالات المقاومة مما يساعد على تلاشى فشل برنامج المكافحة , وتكرار الرش .
7- ترشيد إستخدام المبيدات الكيميائية , ذلك نتيجة خفض عدد الرشات , نتيجة لزيادة كفائة المبيدات المستخدمة .
8- إطالة الفترة بين الرشات المختلفة ( نتيجة لنفس الأسباب ) مما يقلل من فرصة تكون سلالات حقلية مقاومة لفعل المبيدات .
9- خفض التاثير الإبادى أو الضار على الأعداء الطبيعية ( نتيجة لنفس الأسباب ) وزيادة فرصة بقاءها , وفاعليتها .
10- المحافظة على البيئة عامة , وصحة الإنسان خاصة .
11- خفض تكاليف مقاومة الآفات .
12- زيادة إنتاجية وحدة المساحة .
13- زيادة العائد الإقتصادى من وحدة المساحة .
14- إعطاء نموذج فعال لمشروع تطبيقى يمكن تنفيذه فى محاصيل أخرى , وضد آفات أخرى .

5)- الجهة المشرفة على تنفيذ المشروع : قسم بحوث ديدان اللوز بكامل أعضاء الهيئة البحثية ( مشرفين على التنفيذ فى المحافظات على غرار مشروع اللوز ).
6)- مكان تنفيذ المشروع : جميع محافظات القطن فى الجمهورية .
7)- الجهات المسئولة عن تنفيذ المشروع وتوفير إحتياجاته :
لجنة المبيدات الزراعية – الإدارة المركزية لمكافحة الآفات – صندوق دعم البحوث التطبيقية - معهد بحوث وقاية النباتات
8) فى حالة الموافقة على تنفيذ المشروع : يتم وضع البروتوكل التنفيذى لتقييم المبيدات الموصى بها من طرف وزارة الزراعة المصرية ( أسوة بطرق التقييم الأخرى والتى هى بالتأكيد أقل دقة - أكثر صعوبة- أكثر مشاكل – أكثر تكلفة – أطول وقتا .... ألخ } كما هو واضح فى التقرير المرفق { .
8): الباحث الرئيسى للمشروع : أ.د . عبدالله محمد البلتاجى ( رئيس بحوث – قسم بحوث ديدان اللوز) .

31/5/2009

مقدمه
د. عبدالله محمد البلتاجى
رئيس بحوث – قسم بحوث ديدان اللوز
محطة بحوث وقاية النباتات
الإسكندرية

مرفق طية : صورة من التقرير الذى قدمه أ.د . محسن الجندى رئيس قسم بحوث مقاومة الآفات للمبيدات بالمعمل المركزى للمبيدات ( عام 1988 ) والذى نشره أ.د. زيدان هندى عام 2006 فى كتابه الهام جدا فى هذا المجال " مقاومة الآفات لفعل المبيدات ( المشكلة والحلول ) صفحات ( 28-35 ) .

Welcome


Welcome to my bogger

" Attracticide Resistance Monitoring Technology "

whereas I discuss the probles of insecticides resistance, and how to manage it using the attracticide Resistance Monitoring Technology as a tool for the assesment and bioassyes , and to apply different technologies to overcome these problems, as the use of biological control technology , or pheromone technology.

Thanks to visit me.

Dr. Abdallah M. Albeltagy

www.albeltagy.com

albeltagy515@gmail.com